STEM
Exercise (of ):
- Comment
- Love
Solving Derivatives
5 CQ
Calculating the derivative of a function is easier than taking the definition of the derivative! LeThis lesson teaches you the process for solving derivatives.
- Recommended Recommended
- History & In Progress History
- Browse Library
- Most Popular Library
Get Personalized Recommendations
Let us help you figure out what to learn! By taking a short interview you’ll be able to specify your learning interests and goals, so we can recommend the perfect courses and lessons to try next.
Start InterviewYou don't have any lessons in your history.
Just find something that looks interesting and start learning!
23
Comments
Ralph D
When explaining the rules please highlight the terms you are speaking about just don't re-display a changed equation ..it is too confusing
appreciate
appreciated
–
reply
–
delete
Ralph D
your explanation of the proof graphically that derivative of sinx = cosx does not make sense to me because you introduced a sin curve created to prove your points using tangent derivations that need to be proven true over the number line ad infinitum. trying to prove this by using it's own definition is merely making a self-definition from it's own process and dividing by 2. Who invented the sine curve? sinx is trigonometric and not algebraic therefore it cannot be proven algebraically.
appreciate
appreciated
–
reply
–
delete
Janet W
This is going to take me a bit of time to fully absorb! My learning in calculus is way back at the beginning, so you are way ahead of wherever I am. Thanks for showing me what is ahead of me.
appreciate
appreciated
–
reply
–
delete
Genece B
I am having issues with finding the second derivative of this function. I have the first but am struggling to get the second. f(x) = (2x^2+ 1)^3. can you help me with this?
appreciate
appreciated
–
reply
–
delete
Frances A
Teacher was very precise and easy to understand.
appreciate
appreciated
–
reply
–
delete
Krista King Math
Glad you liked it!
appreciate
appreciated
–
reply
–
delete
Anchal J
it's cool to learn like this
appreciate
appreciated
–
reply
–
delete
View more comments